Innovation Capabilities & Products
- Prototype | Morbidostat: Unraveling Antimicrobial Resistance
Morbidostat is a computer-controlled continuous culture device that automatically adjusts drug concentration to maintain constant growth inhibition in microbial cultures. As bacteria acquire mutations that give them resistance against drugs, they are able to tolerate higher drug concentrations and grow faster, thus removing selective pressure, the driving force of evolution. To compensate for this, morbidostat increases drug concentration sufficiently to keep bacteria at their original growth rate, therefore maintaining selective pressure over time. This system allows for data acquisition to model microbial evolution under antimicrobial stress, optimize biocide dosage strategies and develop highly antimicrobial-resistant strains used to test the performance of new biocides, among other applications.
- Software | Fish-T-TaB Simulator: Temperature simulator for fish stored in tubs and boxes
This model was developed and applied by members of the EFSA Working Group on the transport/storage of fresh fishery products during the preparatory work on the BIOHAZ Scientific Opinion on the use of "tubs" for transporting and storing fresh fishery products (EFSA-Q-2019-00053). Heat transfer modeling was applied to estimate surface temperature of fish during the temperature-related processes of cooling and subsequently maintaining the chill temperature of the fish (‘cooling’ process) and/or maintaining the chill temperature (‘keeping’ process) for fish kept in ice (in boxes) versus in water and ice (in tubs) under similar transport/storage conditions.
More information here.
- Software | CRNreals: distinguishability analysis of biochemical reaction networks
A software toolbox that supports the distinguishability analysis of chemical reaction network (CRN) models.
More information here.
- Capabilities | Design of disinfection procedures and modeling for the prevention of antimicrobial resistance
Development of chemical (combinations of disinfectants, essential oils) and biological (enzymes, phages) strategies that are effective for removing monospecific and mixed microbial biofilms from surfaces in the food industry. Biocide testing and development of better biocide dosage strategies for the food industry, ensuring food safety while avoiding antimicrobial resistance acquisition.
- Software | Kinetics of E. coli inactivation by benzalkonium chloride v1.0
This model and associated code was developed to optimize disinfection protocols and minimize bacterial resistance. This model was applied in the following journal article: Optimization of E. coli Inactivation by Benzalkonium Chloride Reveals the Importance of Quantifying the Inoculum Effect on Chemical Disinfection. Front. Microbiol., 26 June 2018. https://doi.org/10.3389/fmicb.2018.01259
More information and access to the code here.
- Software | GenSSI: toolbox for structural identifiability analysis of biological models
GenSSI is a toolbox that requires MATLAB and Symbolic Math Toolbox. It offers a technique for studying structural identifiability using iterative Lie derivatives and identifiability tableaus.
More information here,
- Capabilities | Modeling and optimization of fermentative processes and other bioprocesses with industrial utilization
Development of mathematical algorithms and simulation software for global optimization and control of bioprocesses in the food and biotechnological industry
- Software | saCeSS: a parallel global optimization library
The saCeSS library allows solving non-linear programming (NLP) and mixed-integer non-linear programming (MINLP) problems. It also offers efficient local solvers for nonlinear parameter estimation problems associated with complex models (e.g. those described by differential equations).
More information here.
- Software | SensSB: toolbox for the development and Sensitivity analysis of Systems Biology models
Authors: M. Rodríguez-Fernández and J. R. Banga
Description: SensSB is an easy-to-use Matlab®-based sensitivity analysis software toolbox. This tool integrates a variety of local and global sensitivity methods that can be applied to biological models described by ordinary differential equations (ODEs) or differential algebraic equations (DAEs). SensSB is also able to import models in the Systems Biology Mark-up Language (SBML) format.
Available here upon request.
- Capabilities | Assessment of nutritional value in seafood and design of personalized nutrition treatments and products
Design and development of seafood products for target consumers (elderly, young, diabetic, allergic to seafood, etc.) that guarantee specific nutritional requirements, safety and sustainability. Development of techniques (i.e. metabolomics, proteomics, genomics, lipidomics, etc.), using animal models and cell cultures, to characterize the response of a patient/consumer to diet and to design personalized nutrition treatments and products (i.e. nutraceutics, hypoallergenic fish products, immunostimulants, functional foods, etc).