15
staff
6.77 M
funding*
35
projects & contracts*
*data from the last 5 years
Research
Projects
Publications
  • Pedreira, A.; Vázquez, J.A.; García, M.R. (2022) Kinetics of Bacterial Adaptation, Growth, and Death at Didecyldimethylammonium Chloride sub-MIC Concentrations Frontiers in Microbiology DOI:10.3389/fmicb.2022.758237
  • Ovalle, J.C.; Vilas, C.; Antelo, L.T. (2022) On the use of deep learning for fish species recognition and quantification on board fishing vessels Marine Policy DOI:10.1016/j.marpol.2022.105015
  • González, P.; Osorio, R.R.; Pardo, X.C.; Banga, J.R.; Doallo, R. (2022) An efficient ant colony optimization framework for HPC environments Applied Soft Computing Journal DOI:10.1016/j.asoc.2021.108058
  • Otero-Muras I; Banga JR (2021) Synthetic Gene Circuit Analysis and Optimization " Computational Methods in Synthetic Biology" Humana Press / Springer ISBN:978-1-0716-0822-7
  • Otero-Muras I; Banga JR (2021) Automated Biocircuit Design with SYNBADm " Synthetic Gene Circuits" Springer ISBN:978-1-0716-1031-2
Theses
  • TFM - Andrea Arribas Jimeno (26/09/2022) Aplicabilidad de la tecnología de imágenes hiperespectrales (HSI) como método no invasivo para la evaluación de la calidad del pescado UNIVERSIDAD DE SANTIAGO DE COMPOSTELA
  • TFM - Artai Rodríguez Moimenta (19/07/2020) Desarrollo de un modelo de corte mecanístico que permita describir un proceso de fermentación mixta Universidad de Vigo (UVigo)
  • TFG - Laura Honrubia Baamonde (11/07/2019) Optimization of Benzalkonium Chloride treatment in the disinfection of L. Monocytogenes in the Food Industry UNIVERSIDAD DE LLEIDA
  • TFM - Pablo de la Torre Fernández (20/09/2018) Modelado del proceso de fermenatición vínica: co-cultivo de especies no convencionales Universidade da Coruña
  • PhD - Alejandro López Núñez (18/07/2018) CONTRIBUTIONS TO MATHEMATICAL MODELLING AND NUMERICAL SIMULATION OF BIOFILMS UdC
Innovation
Contracts
Capabilities
  • Capabilities | Development of Artificial Intelligence applications for fisheries management

    Development of Deep Learning algorithms that allow automating fisheries monitoring processes and reducing time and costs compared with processing by human observers. The applications developed range from innovative systems for real-time remote electronic monitoring, which identify and quantify total catches of fishing vessels (e.g., iObserver), to new image recognition techniques that allow individually identifying fish and estimating population parameters. 

     

  • Capacidades | Deseño de procedementos de desinfección e modelaxe para a prevención da resistencia a axentes antimicrobianos

    Desenvolvemento de estratexias químicas (combinacións de desinfectantes, aceites esenciais) e biolóxicas (encimas, fagos) que sexan efectivas na eliminación de biopelículas monoespecíficas e mixtas en superficies usadas na industria alimentaria. Proba de biocidas e desenvolvemento de mellores estratexias de dosificación de biocidas para a industria alimentaria, garantindo a seguridade alimentaria ao tempo que se evita a adquisición de resistencia a axentes antimicrobianos.

     

  • Capacidades | Desarrollo de aplicaciones de Inteligencia Artificial para la gestión de pesquerías

    Desarrollo de algoritmos de Deep Learning que permiten automatizar los procesos de monitorización de las pesquerías y reducir el tiempo y los costes en comparación con el procesado mediante observación humana. Las aplicaciones desarrolladas van desde sistemas innovadores de monitorización electrónica remota en tiempo real, que identifican y cuantifican las capturas totales de los barcos de pesca (p. ej., iObserver), hasta nuevas técnicas de reconocimiento de imagen que permiten identificar los peces a nivel individual y estimar parámetros poblacionales.

     

  • Capacidades | Desarrollo de etiquetado inteligente y activo de los alimentos

    Desarrollo de etiquetas inteligentes para los alimentos basadas en modelos de oxidación, crecimiento microbiano, etc. que permitan a quienes los consumen saber cuándo los alimentos ya no son aptos para su consumo, ayudando a evitar el desperdicio de alimentos, y que informen sobre su frescura, temperatura del paquete, etc

Products
  • Prototype | Morbidostat: Unraveling Antimicrobial Resistance

    Morbidostat is a computer-controlled continuous culture device that automatically adjusts drug concentration to maintain constant growth inhibition in microbial cultures. As bacteria acquire mutations that give them resistance against drugs, they are able to tolerate higher drug concentrations and grow faster, thus removing selective pressure, the driving force of evolution. To compensate for this, morbidostat increases drug concentration sufficiently to keep bacteria at their original growth rate, therefore maintaining selective pressure over time. This system allows for data acquisition to model microbial evolution under antimicrobial stress, optimize biocide dosage strategies and develop highly antimicrobial-resistant strains used to test the performance of new biocides, among other applications.

     

  • Software | PREMER: fast network inference with information theory

    PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction) is an open-source, multi-platform software tool for inferring network structures from data using information-theoretic measures. While this general purpose tool has been developed with biological networks in mind, it can be applied to other areas.

    More information here.

     

  • Software | BioPreDyn-bench: a suite of benchmark problems for dynamic modeling in systems biology

    BioPreDyn-Bench is a suite of benchmark problems for dynamic modeling in systems biology. Currently, it contains six challenging parameter estimation problems, which aspire to serve as reference test cases in this area. This set includes medium- and large-scale kinetic models of E.coli, S. cerevisiae, D. melanogaster, Chinese Hamster Ovary (CHO) cells and a generic signaling network. The level of description includes metabolism, transcription, signal transduction and development.

    More information here.

  • Prototype | iObserver: On-board electronic monitoring system for catch identification and quantification

    iObserver is an innovative monitoring device based on automated video monitoring coupled with artificial intelligence developments for visual recognition and quantification of the catches on board fishing vessels.

    iObserver implements a continuous image recording system adaptable to different fishing vessels and deep learning algorithms to automatically identify and quantify catches on board in real time.

    iObserver focuses mainly on developing algorithms for robust automatic species recognition and size estimation of fish transported on a conveyor belt. Trials have been performed on board Spanish oceanographic vessels and commercial vessels. With over 300 days at sea, iObserver was used in more than 1000 hauls and took more than 200,000 pictures, and 17 species have already been included in the system's catalogue.  

    For further information, please contact us by e-mail.

Team

More